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Abstract

The following list of tableaux-based theorem provers was assembled in the
Spring and Summer 1993 as the result of a wide-spread enquiry via e-mail. It is
intended to provide a short overview of the field and existing implementations.
For each system, a short description is given. Additionally, useful information
about the system is presented in tabular form. This includes the type of logic
which can be handled by the system (input), the implementation language,
hardware and operating systems requirements (implementation). Most of the
systems are available as binaries or as sources with documentation and can
be obtained via anonymous ftp or upon request. The descriptions and further
information have been submitted by the individuals whose names are given
as contact address (except for 12, 14, 21 which have been formulated by the
editor on the basis of submitted texts). The provers are ordered alphabetically
by their name (or the author’s name).



1 P

“g,T‘%D [23, 22, 8] has been developed at the University of Karlsruhe. Despite of its

name, 3TAP is able to deal with classical —i.e. two-valued — first-order predicate logic
as well as with any finite-valued first-order logic, provided the semantics is specified
by truth-tables. Currently implemented versions are working for two-valued and for
a certain three-valued first-order predicate logic, which is a variant of the strong
Kleene logic. The multiple-valued version implements the concept of generalized
signs. 3T/§D is able to deal with equality, which is treated as a two-valued predicate
in the multiple-valued case.”

Input: arbitrary many-valued first order logics; classical first order
logic with equality
Implementation: | sequential, Prolog

Availability: source code and documentation available
Contact Address: | R. Hahnle email: reiner@ira.uka.de
B. Beckert email: beckert@ira.uka.de

2 Bluegum

“Bluegum is a tableaux-based theorem prover for first-order predicate logic in clausal
form. Bluegum uses a calculus based on model elimination [28], and employs a vari-
ety of inference restriction techniques and heuristics to prune the search space [48].
The proot procedure uses depth-first iterative-deepening to guarantee completeness,
and a variety of techniques inspired by links to improve the overall efficiency [50].
Bluegum is implemented as a set of C++ objects, and makes extensive use of
advanced object-oriented techniques such as inheritance, polymorphism, dynamic
binding, and parameterized-typing to engineer an efficient platform for experimen-
tation. Facilities are provided to generate both text and graphical representations of
the proof, and produce a variety of proof statistics. The current system can handle
propositional logic, and work on a first-order system is well-advanced.”

Input: first order predicate logic in clausal form

Implementation: | sequential, C++ (AT&T v3) on SunOS

Availability:

Contact Address: | K. Wallace email: kevin@cs.newcastle.edu.au

3 Cassandra

“Cassandra [19, 20, 21] is a simple prover-generation system, allowing the user to
design and execute tableau prover prototypes for a variety of applications, including
Classical, Modal, Temporal Logics and word problems for simple grammars.

While the system lacks any real proof search control mechanism, its data struc-
tures are very efficient, allowing it to work on proofs of moderate difficulty.



The system does not yet offer reasoning with equality or arbitrary functions.
A future version is planned (to be written in LISP), offering more extensive proof
control and more reasoning facilities for functions.”

Input: full first order predicate logic, modal and temporal logics,
some grammars

Implementation: | sequential, C
Availability: sources and documentation available

Contact Address: | M. Grundy email: markg@arp.anu.edu.au

4 Deep Thought (DT)

“Deep Thought (DT) [16] is an automated free variable analytic tableau prover for
full first order logic without equality. There is also a version available for a certain
three-valued logic. The next version will include the possibility to load a user-
defined multiple valued logic and the corresponding rules. DT uses the liberalized
6—rule described in [24]. Static indexing has been implemented for axiom selection.
Tableau expansion is controlled by a sophisticated strategy. The Amiga version
includes a graphical user interface. DT’s protocol may be saved as IATRX source,
a TreeTeX representation of the proof may be generated (due to the limitations of
TreeTeX this feature is only useful for small proofs). DT has been mostly inspired

by 3T/¥D (see Section 1).”

Input: first order predicate logic (three-valued logic)
Implementation: | sequential, C on Commodore Amiga (Sun OS in preparation)
Availability: source code, binaries and documentation available
Contact Address: | S. Gerberding

email:

gerberding@inferenzsysteme.informatik.th-darmstadt.de

5 FAUST

“There are three versions of the FAUST-Prover [25, 40, 41]: the first one is based
on a Sequent Calculus which is extended by a special form of unification in order to
compute instances of Gamma-rules. The second version of FAUST is based on struc-
tures called tableau graphs which resemble matrices of connection calculi. The third
version of FAUST will be based on Shannon Graphs and also on Binary Decision
Diagrams. The FAUST-Prover is used in the domain of hardware-verification which
requires in general higher-order logic. Therefore the prover has been integrated in



a higher-order proof checker called HOL which is available by anonymous ftp.”

Input: first order predicate logic

Implementation: | sequential, SML of New Jersey (Sun OS)
Availability: system available
Contact Address: | K. Schneider, Th. Kropf

email: schneide@ira.uka.de or kropf@ira.uka.de

6 Forest Theorem Prover

“The UK Alvey Forest project theorem prover [4, 10] was developed for proving
properties of Real Time Requirements Specifications. The basic specification logic
is a first order modal logic of action, with deontic operators for normative behaviour,
constant domain and non-rigid designators. The theorem provers have been tableau
based, with an iterative linear search algorithm. There is no publically available
version now, but the work is described in the cited references, and related mixed-
logic developments are under way.”

Input: first order modal logic of action (see above)

Implementation: | sequential, PROLOG

Availability:

Contact Address: | J. Cunningham email: rjc@doc.ic.ac.uk

7 HimMLKreuz

“HimMLKreuz [18, 17] is a theorem prover for first order logic (without equality)
based on Binary Decision Diagrams (BDD) with a strategy of proof search through
control of information in the sense of Shannon. HimMLKreuz incorporates analogues
of linear resolution, the pure literal rule and Billon’s instance subtraction technique
which generalizes cg-resolution.”

Input: first order predicate logic

Implementation: | sequential, HimML (Standard ML + Sets)

Availability: proprietary system (Bull S.A.)

Contact Address: | J. Goubault email: Jean.Goubault@frcl.bull.fr

8 i1TAB

“ITAB is a prover based on the ILFA-library which has been developed by IBM
Germany. 1TAB has been integrated into the ILF deduction experimental shell



[12).”

Input: First order predicate logic

Implementation: | sequential, C

Availability: source code available, ILFA-library is proprietary by IBM
Germany

Contact Address: | A. Wolf email: wolf@informatik.hu-berlin.de

9 linseq

“Linseq [47] is a tableaux-based prover for full first-order propositional linear logic,
an undecidable logic. Linseq uses several modifications to standard rules, suited for
tableaux-style theorem proving, and special strategies. The main purpose of imple-
menting linseq was comparing tableaux-style and resolution-style theorem proving
for linear logic (LL). The resolution-style prover “linres” for LL is also implemented.
In our experiments the efficiency of linseq and linres was roughly comparable, ex-
cept for the nonexponential sublanguage of LL, where linres was much better than
linseq.”

Input: full first-order propositional linear logic

Implementation: | sequential, C and Scheme
Availability: source code and documentation available
ftp: ftp.cs.chalmers.se:/pub/provers/misc/linseq.tar.Z

Contact Address: | T. Tammet email: tammet@Qcs.chalmers.se

10 Meteor

“Meteor [3, 2, 1] compiles clauses into a data structure that is then ”interpreted”
by a sequential (any UNIX machine) inference engine or parallel (Butterfly TC2000,
Network of Workstations) engines. The underlying inference mechanism is Model
Elimination, but Meteor also employs caching and lemmaizing (with demodulation)
as redundancy reducing mechanisms. These methods, combined with several differ-
ent depth measures used in conjunction with an iterative deepening search, permit
Meteor to discover proofs of hard theorems. ”

Input: first order predicate logic in clausal form

Implementation: | sequential and OR-parallel, C (UNIX on sun, DEC)
Availability: binaries available

Contact Address: | O.L. Astrachan email: ola@cs.duke.edu

11 [W. Neitz]

“We present a theorem prover which performs a selective backtracking strategy.
This prover [30, 31] is based on the idea of the Prolog Technology Theorem Prover
(PTTP) introduced by Stickel (see Section 19).



First order formulas are transformed into a set of Prolog clauses which per-
forms when executed the complete Model Elimination procedure with an iterative-
deepening-search strategy and selective backtracking.

The information needed for selective backtracking is provided by a unification
algorithm also coded in Prolog.”

Input: First order predicate logic

Implementation: | sequential, Prolog (Quintus Prolog)

Availability:

Contact Address: | W. Neitz email: wneitzQinformatik.uni-leipzig.de

12 [W. Ophelders]

This tableau-based theorem prover [32, 33, 14, 13] is able to handle formulae of first
order predicate logic with function symbols but without equality. The sound and
complete prover uses unification without first to skolemize, a technique which addi-
tionally takes care of restrictions for the construction of new terms. Such restrictions
contain the occurs-check and further constraints in a given list. Extensions to intu-
itionistic logic and other non-classical logics are discussed in [32]. Using Pelletier’s
list of 75 problems for testing automated theorem provers a comparison is made
with both resolution based provers (PCPROVE, Otter, Satchmo) and tableau-based
provers (Fitting, Reeves).

Input:

Implementation: | sequential, LPA-Prolog

Availability: source code and documentation available

Contact Address: | W. Ophelders email: Ophelders@Facburo.FEW.EUR.NL
H. de Swart email: swart@kub.nl

13 PartabX

“None of the following list of theorem provers (with the generic name “PartabX”) re-
quire clausal form. These provers are implemented in Strand and run on distributed
or parallel architectures. The development rationale was to parallelise the tableau
method and its derivatives in order to utilise a distributed network of machines.
These theorem provers are lumped together under the name PartabX (Parallel
tableaux), however, they are extremely different and include dummy/free variable,
exhaustive tableau, and connection method based systems. For this reason they are
categorised below. The overriding necessity was to develop all systems in a uniform
environment for comparative purposes. All tableau systems use OR-parallelism.
Connection method systems apply speculative parallelism except for the final one
being developed currently. Strand itself operates using a condition-synchronised
AND-parallelism regime. All systems will obviously all run sequentially if neces-
sary. All tableau systems incorporate a number of heuristics (uniformly), many of
which are outlined in [34]. Additionally, there is an (almost always useful) option



of discarding used sentences.”

Name Input Description

prop propositional logic | Basic tableau system

extop function-free FOL | First order exhaustive method

dfop —— FOL dummy /free-variable method

dbdfop —— FOL dummy/free-variable method tableau sys-
tem adaptation. Multiple conclusions (interro-
gations) may be tested against a single set of
premises (the database) for validity to simulate
database interrogation.

kprop prop. modal logics | Propositional modal tableau systems with

K, K4, D, D4, T, S4 | parallel evaluation of possible worlds.

cp01,cp02 | propositional logic | Implementation of Bibel’s

cp03 Connection Method

con propositional logic | Basic path elaboration through a connection
method clausal matrix

Input: see above (clausal form not required)

Implementation: | parallel, Strand

Availability:

Contact Address: | R. Johnson email: robj@sun.com.mmu.ac.uk

14 Parthenon

“Parthenon (PARallel THEorem prover for NON-Horn clauses) [9] is an OR-parallel
theorem prover for first order predicate logic. The underlying proof calculus is a
variant of Model Elimination. Parthenon exploits OR-parallelism by dynamically
executing independent parts of the search tree on different processors, using a com-
putational model similar to the SRI-Model for OR-parallel Prolog. PARTHENON,
being the first implementation of an OR-parallel theorem prover, runs on various
multi-processors, e.g., an Encore Multimax (16 processors, 32 MBytes shared mem-

ory), and an IBM RP3 (64 ROMP processors).”

Input: first order predicate logic in clausal form

Implementation: | OR-parallel, C (with C-threads) under mach

Availability: upon request

Contact Address: | E.M. Clarke  email: Edmund_Clarke@G.GP.CS.CMU.EDU




15 PegaSys

“PegaSys is a system design tool! that uses a simple tableaux-based prover for check-
ing constraints on system specifications (e.g., “type constraints” on the predicates),
for checking the correctness of design refinement steps, and for answering queries.
PegaSys is currently being used by the client who sponsored its development on sev-
eral major commercial development efforts; it’s out in the world proving thousands
of (easy) theorems every day.”

Input: first order predicate logic

Implementation: | sequential, Lisp

Availability:

Contact Address: | R. Riemenschneider email: rar@csl.sri.com

16 PI

“The PI system [38, 39, 29] computes all prime implicants and prime implicates of a
propositional formula in negation normal form (NNF). We have shown that avoiding
CNF and DNF is exponentially advantageous for certain classes of formulas. The
system combines a new algorithm, PI, with the path dissolution inference rule.
(Dissolution is an efficient generalization of the tableau method.) The core of the
system is an implementation of path dissolution which can be run as a theorem
prover for propositonal logic. The current system is only a prototype but will be
available via ftp in the future.

It is planned to extend the system to output essential versus non-essential im-
plicants/implicates, and to output minimal sets of implicants/implicates that are
equivalent to the input formula. Further extensions for handling incremental prob-
lems and for multiple-valued logics are planned.”

Input: ground NNF (negation normal form)
Implementation: | sequential, C and Lisp on SUN 3/60 (SunOS 4.%)
Availability: source code, binaries, and documentation available

Contact Address: | A.G. Ramesh

email: rameshag@cs.albany.edu or nvm@cs.albany.edu

17 PROTEIN

“The PROTEIN (PROver with a Theory Extension INterface, [6]) system is a the-
orem prover for first-order predicate calculus. It follows basically Loveland’s Model
Elimination procedure with several calculus refinements (e.g. regularity, factorisa-
tion). Additionally, PROTEIN provides the calculus variant “Restart Model Elimi-
nation” ([7]) which does not need contrapositives. Equality is built-in using Brand’s

!The author(s) of PegaSys have several papers either submitted for publication or in prepara-
tion, but none describes the theorem prover in any detail. They consider it to be an application
of proven technology, not part of their research.



“modification method”. An important feature is PROTEIN’s interface for general
theory reasoning, which can e.g. be instantiated with automatically “completed”
theories ([5]).

PROTEIN is implemented as a compiler according to Stickel’s PTTP-Technique and
thus exhibits high inference rates.”

Input: first order predicate logic in clausal form, theories (optionally)
Implementation: | sequential, ECL‘PS¢-Prolog

Availability: source code available

Contact Address: | P. Baumgartner email: peter@informatik.uni-koblenz.de

18 pTAB

“pTAB [49] is a tableaux-based theorem prover implemented in Prolog. It has
been developed within a diploma thesis and is integrated into the ILF deduction
experimental shell [12]. pTAB can also be used as a standalone system.”

Input: first order predicate logic

Implementation: | sequential, Prolog (sun OS and DOS)

Availability: source code available

Contact Address: | A. Wolf email: wolf@informatik.hu-berlin.de

19 Prolog Technology Theorem Prover (PTTP)

“The Prolog Technology Theorem Prover (PTTP) [45, 46] is an implementation
of the Model Elimination theorem-proving procedure that extends Prolog to the
full first-order predicate calculus. PTTP differs from Prolog in its use of unification
with the occurs check for soundness, depth-first iterative-deepening search instead of
unbounded depth-first search to make the search strategy complete, and the Model
Elimination reduction rule that is added to Prolog inferences to make the inference
system complete. Two versions are available: one is written in Common Lisp and
compiles clauses into Common Lisp; the other is written in Prolog and compiles
clauses into Prolog.”

Input: first order predicate logic in clausal form

Implementation: | sequential, Prolog and Lisp (Common Lisp)

Availability: source code available

Contact Address: | M. Stickel email: stickel@ai.sri.com

20 [C. Schwind]

“This tableaux-based theorem prover [44, 43, 26] contains a kernel for classical logic
and extensions to several systems of propositional, modal and temporal logic. One



extension of this prover is for default logic, one for action logic.”

Input: see above

Implementation: | C (for propositional logic), Prolog II

Availability: binaries and documentation available

Contact Address: | C. B. Schwind email: schwind@gia.univ-mrs.fr

21 SETHEO

The SEquential THEOrem prover SETHEO [27] is based on the Model Elimination
Calculus [28]. It is implemented as an extended Warren Abstract Machine; input
clauses are preprocessed and compiled into abstract machine code. Completeness is
ensured by iterative deepening using several depth measures.

A number of mechanisms for pruning the search space, based upon the efficient
handling of syntactic unequality constraints have been developed and allow to suc-
cessfully tackle difficult problems. Proofs, found with SETHEO, can be displayed in
a graphical way (X-Windows). Several parallel provers have been developed on top
of SETHEQO: dynamic partitioning of the search space, using a dynamic scheme for
work distribution (PARTHEO, [42]), static partitioning with slackness (SPTHEO),
and random competition (RCTHEO, [15]).

Input: first order predicate logic in clausal form

Implementation: | sequential and parallel, C
Availability: binaries and sources available
ftp: flop.informatik.tu-muenchen.de:/pub/fki/setheo.tar.Z

Contact Address: | J. Schumann email: setheo@informatik.tu-muenchen.de

22 SHARE

“Shannon graphs are a representation that lies between Binary Decision Diagrams
(BDDs) and semantic tableaux: Shannon graphs can be understood as either non-
reduced BDDs, or as a linear representation of fully expanded tableau (linear w.r.t.
the length of the negation normal form of a formula). The SHARE (SHAnnon
graph REfutation system) system [35, 36, 37] is an experimental, compilation-based
theorem prover: it translates arbitrary first-order formulae into Shannon graphs and
then compiles the graphs into a Prolog program; the proof search is carried out by
running the generated program.”

Input: first order predicate logic

Implementation: | sequential, Prolog (Quintus Prolog) on SunOS

Availability: system available upon request

Contact Address: | J. Posegga email: posegga@ira.uka.de

10



23 Tableau

“Tableau [11] is an implementation of the propositional case of Smullyan’s tableau
based inference algorithm. For efficiency, unit-resolution is special cased and several
heuristics are used to pick the clauses to branch on. Tableau has been used for
a series of large experiments on locating hard areas in satisfiability problems (see

11]2).”

Input: propositional logic in clausal form

Implementation: | sequential, C, Lisp, shell-scripts for coarse-grain parallelism
Availability:
Contact Address: | J. Crawford email: jc@research.att.com
L.D. Auton email: lda@research.att.com

24 [D. Vallstroem]

“This theorem prover is designed for ”Solovay’s” modal logics of provability, G and
G*. The “system” is just a small theorem prover based on the method of semantic
trees, depth first, together with a briet description of the logics and the program,
and a couple of examples. There should be informal proofs of the corectness of
the important parts of the program ready soon. The program is meant to be used
together with an interactive compiler/interpreter.”

Input: “Solovay’s” modal logics of provability, G and G*

Implementation: | sequential, SML

Availability: system available

Contact Address: | D. Vallstroem email: hugo@student.cs.chalmers.se
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